ar X iv : 1 60 3 . 02 22 1 v 1 [ m at h . PR ] 7 M ar 2 01 6 Monotonicity and complete monotonicity for continuous - time Markov chains
نویسندگان
چکیده
We analyze the notions of monotonicity and complete monotonicity for Markov Chains in continuous-time, taking values in a finite partially ordered set. Similarly to what happens in discrete-time, the two notions are not equivalent. However, we show that there are partially ordered sets for which monotonicity and complete monotonicity coincide in continuous time but not in discrete-time. To cite this article: P. Dai Pra et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006). Résumé Nous étudions les notions de monotonie et de monotonie complète pour les processus de Markov (ou chaînes de Markov à temps continu) prenant leurs valeurs dans un espace partiellement ordonné. Ces deux notions ne sont pas équivalentes, comme c’est le cas lorsque le temps est discret. Cependant, nous établissons que pour certains ensembles partiellement ordonnés, l’équivalence a lieu en temps continu bien que n’étant pas vraie en temps discret. Pour citer cet article :P. Dai Pra et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006) Email addresses: [email protected] (Paolo Dai Pra), [email protected] (Pierre-Yves Louis), [email protected] (Ida Minelli). Preprint submitted to Elsevier Science 2006 Version française abrégée L’utilisation des chaînes de Markov dans le cadre des algorithmes MCMC soulève de nombreuses questions au sein desquelles la monotonie joue un rôle important. Deux notions de monotonie sont considérées pour les chaînes de Markov à valeurs dans un espace partiellement ordonné (S,<) (poset selon la terminologie anglaise). Nous supposons S fini et les chaînes (resp. processus) de Markov homogènes en temps. Dans la définition 1.1 nous reformulons la notion de monotonie, équivalente à la définition usuelle via la propriété de stabilité des fonctions croissantes f sous l’action de l’opérateur de transition Ttf(y) :=
منابع مشابه
ar X iv : 1 60 3 . 02 88 7 v 1 [ m at h . C V ] 9 M ar 2 01 6 A CHARACTERIZATION OF REGULAR POINTS BY L 2 EXTENSION THEOREM
In this article, we present that the germ of a complex analytic set at the origin in Cn is regular if and only if the related L extension theorem holds. We also obtain a necessary condition of the L extension of bounded holomorphic sections from singular analytic sets.
متن کاملar X iv : 1 60 3 . 02 20 5 v 1 [ m at h - ph ] 7 M ar 2 01 6 Operator Approach to the Master Equation for the One - Step Process
M. Hnatich, ∗ E. G. Eferina, † A. V. Korolkova, ‡ D. S. Kulyabov, 3, § and L. A. Sevastyanov 1, ¶ Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research Joliot-Curie 6, Dubna, Moscow region, 141980, Russia Department of Applied Probability and Informatics Peoples’ Friendship University of Russia Miklukho-Maklaya str. 6, Moscow, 117198, Russia Laboratory of Information...
متن کاملar X iv : 1 60 9 . 02 10 5 v 1 [ m at h . D G ] 7 S ep 2 01 6 ROTATIONAL SYMMETRY OF ASYMPTOTICALLY CONICAL MEAN CURVATURE FLOW SELF - EXPANDERS
In this article, we examine complete, mean-convex self-expanders for the mean curvature flow whose ends have decaying principal curvatures. We prove a Liouville-type theorem associated to this class of self-expanders. As an application, we show that mean-convex self-expanders which are asymptotic to O(n)-invariant cones are rotationally symmetric.
متن کاملar X iv : 0 80 9 . 47 83 v 1 [ m at h . C A ] 2 7 Se p 20 08 HEAT - FLOW MONOTONICITY OF STRICHARTZ NORMS
Most notably we prove that for d = 1, 2 the classical Strichartz norm ‖ef‖ L 2+4/d s,x (R×Rd) associated to the free Schrödinger equation is nondecreasing as the initial datum f evolves under a certain quadratic heat-flow.
متن کاملar X iv : m at h / 06 11 11 0 v 1 [ m at h . C A ] 4 N ov 2 00 6 DOUBLING MEASURES , MONOTONICITY , AND QUASICONFORMALITY
We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel against doubling measures with suitable decay. The differentials of mappings that arise in this way satisfy an isotropic form of the doubling condition. We prove that this isotropic doubling condition is satisfied by the distance functions of certain fractal sets. Finally, we construct an isotropic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016